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Goals of Traverse Planning

Maximum Science Return

For long duration operations, must consider:
• Value/Cost Criteria

• Effect of actions on sustainable operations

• Risk/Uncertainty
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Traverse Planning Needs

Plan appropriate traverse
• Maximize science return / minimize cost

• Minimize cost if over-riding goal is to get from point
A to point B
– Predict cost of mobility

– Predict energy expenditures or other resource usage

Validate traverse
• Compatible with operational constraints, static and

dynamic (e.g., average energy expenditure, peak
energy expenditure)

• Compatible with general “flight rules”
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Mobility and Access for Mars
Mars is a
data-rich
environment
for surface
exploration,
but
additional
data would
be useful for
traverse
planning and
execution.
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Heuristic for Local Direction of Travel

Height-Height Correlation Function

C(r)=<|h(x+r)-h(x)|2>x
1/2

Represents directional dependence of topographic
power at a given scale length (r)

Min(C(r)) provides a heuristic for direction of travel for
travel over a given scale length.

Can compute C(r) based on digital elevation model for
desirable scale lengths
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Heuristic for Local Direction of Travel
Example: Field
geology
traverses in the
Bird Spring
Mountains,
Nevada, plotted
with Local
Direction of
Travel heuristic
indicators
(r~300m).
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Heuristic for Minimum Cost Traverse

Define starting and ending points A and B

Randomly choose N points near or between A and B

Build a graph of possible traverse routes
• Create an edge between each set of nearby points x and y

• Assign each edge a cost by applying some cost model to a
path between x and y
– Use some heuristic to choose the direction of traversal

Apply Dijkstra’s shortest (minimum cost) path algorithm
to yield a spanning tree T centered at A

Extract the path from A to B from tree T
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Minimum Cost Traverse Example

The heuristic does not always yield optimal results!
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Minimum Cost Traverse Example (2)

Over many trials, generally yields good results.
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Process for Traverse Planning

A simple framework for traverse planning
• Evaluate Path Independent Surface Conditions and

Accessibility (slope, surface type, restricted areas)
• Identify Sites and Activities of Interest (sampling,

equipment deployment/setup)
• Identify initial possible traverse(s)
• Evaluate Path Dependent Surface Conditions and

Accessibility (surface visibility, sun angles,
shadowing, slopes, heat balance)

• Perform Flight Rule Validation
• Modify or Accept the Traverse Plan
• Communicate the Traverse Plan (enable

coordination)
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Traverse Example: Apollo 14 EVA2

Path Independent Considerations
• Slope restriction of [0 15] degrees

Sites and Activities of Interest
• Geological stations identified from photographs

Identify initial possible traverse(s)
• Traverse order natural due to “out-and-back”

traverse structure

• Uphill first-half, downhill second half for
contingencies
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Traverse Example: Apollo 14 EVA2
Planned
traverse

and

[0 15]

slope
restriction
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Traverse Example: Apollo 14 EVA2
Actual
traverse

and

[0 15]

slope
restriction
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Traverse Example: Apollo 14 EVA2

Path Dependent Considerations
• Metabolic Cost

– Load carrying model (Santee et al.) = 1318 kJ

– Actual ~ 1550 kJ

– Based only on traverses between geologic stations

– No modeling of any other exploration activities

– No modeling of Mobile Equipment Transporter

• Slopes

• Surface Visibility
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Traverse Example: Apollo 14 EVA2

Slopes: spatial sampling along traverse
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Traverse Example: Apollo 14 EVA2

Slopes: temporal sampling along traverse
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Traverse Example: Apollo 14 EVA2
Surface

Visibility

Of

Planned

Traverse
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Traverse Example: Apollo 14 EVA2
Surface

Visibility

Of

Planned

Traverse
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Traverse Example: Apollo 14 EVA2

• Flight Rule Validation
– Performed by Mission Control and “Back Room” planners

in real-time

• Example modification of the traverse plan: change
Cone Crater geological station location to south-
west rim
– Shorter total traverse distance

– Enhanced surface visibility during traverse

– Excellent view into Cone Crater and of Lunar Module

– Better sun-relative traverse direction (cross-sun)

• Communicate the Traverse Plan
– Voice communications – real-time adjustments
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Traverse Example: Apollo 14 EVA2
Visibility

at

modified

Cone

Crater

location

22

Traverse Example: Rover Traverse

Goal: Traverse
from home base
to remote site
while deploying
sensor probe /
communication
relay network
linking the two
sites.

(Crater Lake used
as analog terrain.)
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Traverse Example: Rover Traverse

Slopes limited to [0 20] degrees.

Nominal traverse velocity 0.5 m/s.

Effective antenna height 1.5 m (rover and
sensor/communication wands).

Nominal communication range of 1 km.

Rover energy expenditure model
• 50 kg rover

• Flat surface: 0.216 Ws/m/kg + 5 W baseline

• Slopes: 0.0263 Ws/m/kg/deg; 30% energy recovery
on downhill slopes

• Model based on Lunar Roving Vehicle
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Traverse Example: Rover Traverse

Strategy for traverse planning and execution

do while and(not(mission accomplished), not(give up)) 
compute visible region of surface 
compute minimum cost traverse to destination 
if minimum cost traverse contains a visible location 
 traverse to visible location 
 deploy a data wand 
 if and(previous wand visible, target visible) 
  mission accomplished 
 else if previous wand not visible 
  give up 

loop 
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Traverse Example: Rover Traverse

Example

Minimum

Cost

Traverse
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Traverse Example: Rover Traverse
INITIALIZING ROVER SIMULATION 

ROVER STATE: id=1 x=558671 y=4743633 z=1874 kJ=0 t=0 
NETWORK STATE: Nodes released=0 SourceVisible=1 TargetVisible=0 NodesConnected=1 
MeanCost=NaN 
ROVER IDENTIFIED NEXT COMM/SENSOR NODE at X: 556985 Y: 4742685 Z: 1908 
ROVER TRAVERSING FROM X: 558671 Y: 4743633 Z: 1874 to X: 556985 Y: 4742685 Z: 1908 

ROVER STATE: id=2 x=556985 y=4742685 z=1908 kJ=34 t=0 
NETWORK STATE: Nodes released=1 SourceVisible=1 TargetVisible=0 NodesConnected=2 
MeanCost=1.25 
ROVER IDENTIFIED NEXT COMM/SENSOR NODE at X: 557465 Y: 4741885 Z: 2033 
ROVER TRAVERSING FROM X: 556985 Y: 4742685 Z: 1908 to X: 557465 Y: 4741885 Z: 2033 

ROVER STATE: id=3 x=557465 y=4741885 z=2033 kJ=65 t=0 
NETWORK STATE: Nodes released=2 SourceVisible=1 TargetVisible=0 NodesConnected=3 
MeanCost=1.16 
ROVER FAILED TO FIND SUITABLE NEXT COMM/SENSOR NODE LOCATION, TRYING FOR TARGET 
ROVER FAILED TO FIND SUITABLE NEXT COMM/SENSOR NODE LOCATION, TRYING FOR TARGET 
ROVER FAILED TO FIND SUITABLE NEXT COMM/SENSOR NODE LOCATION, TRYING FOR TARGET 
ROVER FAILED TO FIND SUITABLE NEXT COMM/SENSOR NODE LOCATION, TRYING FOR TARGET 
ROVER FAILED TO FIND SUITABLE NEXT COMM/SENSOR NODE LOCATION, TRYING FOR TARGET 
ROVER FAILED TO FIND SUITABLE NEXT COMM/SENSOR NODE LOCATION, TRYING FOR TARGET 
ROVER FAILED TO FIND SUITABLE NEXT COMM/SENSOR NODE LOCATION, TRYING FOR 1ST TRAVERSE 
POINT 
ROVER FAILED TO FIND SUITABLE NEXT COMM/SENSOR NODE LOCATION, TRYING FOR TARGET 
ROVER FAILED TO FIND SUITABLE NEXT COMM/SENSOR NODE LOCATION, TRYING FOR TARGET 
ROVER FAILED TO FIND SUITABLE NEXT COMM/SENSOR NODE LOCATION, TRYING FOR TARGET 
ROVER FAILED TO FIND SUITABLE NEXT COMM/SENSOR NODE LOCATION, TRYING FOR TARGET 
ROVER FAILED TO FIND SUITABLE NEXT COMM/SENSOR NODE LOCATION, GIVING UP 
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Traverse Example: Rover Traverse

An Example of a Successful Traverse
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Conclusions

• Following some structured traverse planning
process might have resulted in changes in the
planned Apollo 14 EVA2 traverse

• Can apply traverse planning process at different
levels of fidelity, or can focus on only some aspects
of traverse

• Structured traverse planning process can be
automated

• Can allow rapid re-planning even with complex or
numerous flight rules

• Automated re-planning especially valuable when
have long light-travel-time delays (reduce “wasted”
time)
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Lunar Roving Vehicle: Soil Modeling
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